An isolated logarithmic layer
نویسندگان
چکیده
To isolate the multiscale dynamics of logarithmic layer wall-bounded turbulent flows, a novel numerical experiment is conducted in which mean tangential Reynolds stress eliminated except subregion corresponding to typical location channels. Various statistical comparisons against channel flow databases show that, despite some differences, this modified system reproduces kinematics and natural layers well, even absence buffer an outer zone. This supports previous idea that has its own autonomous dynamics. In particular, results suggest velocity gradient wall-parallel scale largest eddies are determined by height tallest momentum-transferring motions, implying very large-scale motions flows not intrinsic part logarithmic-layer Using similar set-up, isolated with constant total stress, representing without driving force, simulated examined.
منابع مشابه
An iterative logarithmic multiplier
The paper presents a new multiplier enabling achievement of an arbitrary accuracy. It follows the same idea of number representation as the Mitchell’s algorithm, but does not use logarithm approximation. The proposed iterative algorithm is simple and efficient and its error percentage is as small as required. As its hardware solution involves adders and shifters, it is not gate and power consum...
متن کاملQuasihomogeneity of Isolated Singularities in Terms of Logarithmic Cohomology
We characterize quasihomogeneity of isolated singularities by the injectivity of the map induced by the first differential of the logarithmic differential complex in the top local cohomology supported in the singular point. 1. Formulation of the result We consider the germ of an isolated singularity D ⊆ (C, 0). Let O = OCn,0 be the ring of germs of holomorphic functions on C at the origin with ...
متن کاملQuasihomogeneity of Isolated Hypersurface Singularities and Logarithmic Cohomology
We characterize quasihomogeneity of isolated hypersurface singularities by the injectivity of the map induced by the first differential of the logarithmic differential complex in the top local cohomology supported in the singular point. 1. Formulation of the result We consider the germ of an isolated hypersurface singularity D ⊆ (C, 0). Let O = OCn,0 be the ring of germs of holomorphic function...
متن کاملLogarithmic Comparison Theorem versus Gauss–manin System for Isolated Singularities
For quasihomogeneous isolated hypersurface singularities, the logarithmic comparison theorem has been characterized explicitly by Holland and Mond. In the nonquasihomogeneous case, we give a necessary condition for the logarithmic comparison theorem in terms of the Gauss–Manin system of the singularity. It shows in particular that the logarithmic comparison theorem can hold for a nonquasihomoge...
متن کاملLogarithmic Utility of an InsiderJ
In this paper, we consider a security market in which two investors on diierent information levels maximize their expected logarithmic utility from terminal wealth. While the ordinary investor's portfolio decisions are based on a public information ow, the insider possesses from the beginning extra information about the outcome of some random variable G, e.g., the future price of a stock. We so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2021
ISSN: ['0022-1120', '1469-7645']
DOI: https://doi.org/10.1017/jfm.2021.177